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Analysis of previously obta ined [1] dynamic  equations for the cor-  

re la t ion  of the ve loc i t i e s  of  a fluid and the  f ine par t ic les  suspended in 

i t  i n d i c a t e  that  in  the f i n n  period of decay  of isotropic turbulence  the 
presence of suspended par t ic les  not only leads to a more  rapid (expon- 

ent ia l )  damping  of the f luctuat ions but, in the case of f ini te  values  of 
the  f lu id -pa r t i c l e  densi ty ratio, also results in distortion of the spect -  

rum and reduct ion of the microsca les  of turbulence.  

In the f inal  period of decay  of isotropic turbulence  of a mix tu re  

of a fluid and par t ic les  whose densi ty is higher  than that  of the fluid 
the t races  of the cor re la t ion  tensors are described by the system of 
equations [1] 
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0-~ W i , i = - - c x ( 2 W i ,  i - - T i ,  i ) c = ~a  ~- , (1) 
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Ti,i  ~- ~ ~ " ~  r2-~r r i ,  i , , 

Here v is the k i n e m a t i c  viscosi ty  of the fluid, a is the radius of 
the par t ic les ,  which are assumed to be spher ical ,  p is the m e a n  vo l -  

ume  concent ra t ion  of par t ic les  in the  mix ture ,  x is the f l u id -pa r t i c l e  

densi ty ratio,  

Vi, i = ( (Vi)  A ( V i ) B ) .  W i ,  i = <(wi)  A (Wi)B>,  Ti, i = 2 <(Vi)A (Wi)B>. 

Here v i and w i are the  components  of  the f luc tua t ion  ve loc i t i e s  of 
fluid and par t ic les .  

System (1) was obta ined on the assumption tha t  p << 1, a << X0 
where )t o is the  in te rna l  sca le  of  turbulence .  Moreover, for the in te r -  

ac t ion be tween  par t ic les  and fluid we have  t aken  the  usual Stokes 

expression. 

We now int roduce the t h r e e - d i m e n s i o n a l  energy spect rum func- 
t ions 

oo ' l  E (k, t ) ~ - ~  krs inkrVi ,  i ( r  , t )dr  t 
o 

oo 

F(It, t ) ~  ~ ~ k r s i n k r W  i i ( r  t) dr, 
o 

a ( k ,  Q = - ~ .  k r s i n k r T i , i ( r  , O d r .  (2) 
0 

Applying the  Fourier s ine - t r ans fo rmat ion  to the functions rVi, i(r  , t), 

rWi, i(r, t), rTi, i(r, t), we reduce sys tem (1) to the form 

OE 
O-t = - -  2vkeE - -  2cpE + cpG , 

OF 
O-T = - -  2 e x f  + cxG, 

9G 
0~[- "~- - -  vk~la - -  c (p + • G + 2cpF + 2cuE. (a) 

System (3) descr ibes  the va r i a t ion  with t i m e  of the spec t rum func- 

t ions def ined by relat ions (2), Note tha t  in the absence  of par t ic les ,  

i. e . ,  when p = 0, the first equa t ion  of sys tem (3) is i den t i ca l  with the 

usual dynamic  energy  spec t rum equat ion ,  when the spec t ra l  t ransfer  

function [2] is neg lec ted .  

After t ransformat ions ,  the cha rac te r i s t i c  equa t ion  of sys tem (3) 
takes  the  form 

(vk 2 + c o + cu + ~,) [(2vk" + 2cO + ~,) (2c~ + L) - -  4c=• = 0 .  

B 

/ ~ / / / / /  

/ 
/ 

gk 2 

Fig. 1 

The roots of this equat ion  are 

~q = - -  o) - -  2c• ~'~ = ~'t + ( 0)2 + 4c2nP) '/', 

k 3 = ,k i -- (o) 2 + 4c~xp) ~/'. (4) 

As a result, we arr ive at the  fol lowing fundamenta l  system of sol-  
utions: 

E 1 = 4d•  e x~(t-t~ F I = - -  4c2Xt9 e xd t - l " ) .  

G 1 = 4c• O ~'l(l-*~ 

E a = {r [r - -  (o~ 2 + 4c2zp) %1 + 
+ 2c2xp} eXdt- to) ,  

F 2 = 2c~x 2 O~.dt--t~), _/;' = 2c2• 2 ek,(t--to)o 

G2 = - -  2c•  [ ~  - -  ( o  2 + 4 d x p ) ' / q  e ~ ' i t -zo) ,  

E 3 = {co [ o  + (co: + 4c2xp) v ' ]  + 2c2xp} eX, t t - t  o), 

G s = ~. 20• [03 + (~2 + 4e2xp)th] e~-,(l--tD (5) 

In expressions (4) and (5) co = vk z + c (p - x). 

Not a l l  the  solutions of sys tem (3) h a v e  physica l  s igni f icance .  In 

fact,  the  quant i t ies  E and F must  be essen t ia l ly  posi t ive,  i. e . ,  E i and 

F i in  (5) must  have  the  same sign. Obviously,  this is not fulf i l led for 

E 1 and F 1 corresponding to the  root X 1 of the charac te r i s t i c  equation;  

hence  this solut ion must  be discarded.  The  functions E z and F 2 have  

the same sign only  over  a l i m i t e d  in te rva l  of Variation of the wave 

number  k. Moreover, these functions tend to zero as p ~ 0 or x --* 0. 

In fact ,  as p "--" 0 the quant i ty  E should go over  into the spectrum 

function for a homogeneous  turbulent  fluid, and as x --* 0 i t  should 

correspond to the  solut ion of [1]. 

Here we shal l  conf ine  ourselves to a cons idera t ion  of the par t icu-  

la r  solut ion corresponding to the  mot X~ of the charac te r i s t i c  equation.  

It is easy t o s e e  tha t  even  in the  case of nega t ive  w the quant i t ies  F~ 

and F a have  the same sign. For c o = m i x  {to} = - c ( x -  p) w e h a v e  

mix  (Ea} ~ 2c2p ~ exp [k a (t - -  to)] > 0, F 3 > 0.  

The  dependence  of  the damp ing  factor and the  re la t ive  values of 

the spect rum functions corresponding to the root k~ on the values  of 

the wave number  is g iven  in Figs. I and 2. 

Thus, we can  wri te  

E ( k ,  t) = E ( k ,  t0) e x p { - -  (vk 2 + c ( p  + x )  + 

+ [O,'k2) 2 + 2c (p - -  x) vk 2 + c 2 (p + x)z] 'A) (t - -  t0)}. (6) 

It  is easy to see tha t  as p --* 0 re la t ion  (6) gives the spect rum 

function for a homogeneous  turbulent  fluid [2]. As "~ "--* 0 re la t ion  

(6) y ie lds  the result  previously  obtained in [1], name ly ,  that  at x 

0 the  turbulent  mot ion  of the f l u id -pa r t i c l e  mix tu re  is s im i l a r  t o  

the turbulent  mot ion  of the homogeneous  fluid (without  par t ic les)  

in the sense tha t  the  presence  of  the par t ic les  affects only the f luctu-  

a t ion energy,  the scales  of tu rbu lence  and the  structure of the energy 
spect rum remain ing  unaffected,  
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For large and small  wave numbers we get, respectively: 

E(k,  t)-~ E(k, to) exp{- -  [2vk'+ 2c; "-~ -~-~- -t- O ( ( v k' ,-' ) ] ( t - -  to ) } 
~(,~/~ >> cp, vks >> cx), (7) 

[ 2pvk~ +O((vk~)')](t--to)} E (k, t) ~ E (k. to) exp { - -  L~--'-~-~ ~ "4- 2c (p -4- x) 

(vk~ ~ cp, vk2~cx ) .  (8) 

From (6), (7) and (8) it follows that a t ~  r 0 the decay of iso- 
tropic turbulence of the fluid-particle mixture is accompanied by a 
considerable distortion of the energy spectrum as compared with the 
case of a homogeneous fluid. In the region of large wave numbers the 
presence of particles is mainly expressed in the appearance of a term 
describing additional exponential damping without serious distortion 
of the spectrum (i. e . ,  the result of [1] relating to the case ~ ~ 0 has 
a universal character in this region). In the region of small  wave num-  
bers there is observed not only additional damping but a change in 
viscous damping, and hence distortion of the energy spectrum. 

Thus, the particle effect is most important at small  wave numbers. 
Despite the widely disseminated a priori assertions of [21 it is precise- 
ly in this region of wave numbers that the  distortion of the energy 
spectrum is most significant, i. e . ,  the particles favor the decay of 
large, rather than small  eddies. 

Using expression (8) and the fact that at small  k the function 
E(k, to) ~ k 4 , it is easy to obtain an expression for the trace of the 

correlation tensor Vi, i" We have 

oo 

2 l' sin kr Vi,t(r , t) = ~ --~r-- E(k, t ) d k ~  
0 (9) 

%F 4,~pt' J P [ - -  8 v p ~ - - 2 c ( p A -  c o n s t c  L a __ r ' ( p + •  r ' ( p + x )  x ) t ] .  

Hence the turbulent fluctuations of the fluid in the presence of 
suspended particles damp according to the law 

<u'% : cons t t  -%exp [ - - 2 c ( p  q-x)  t ] .  (10) 

At ~ = 0 expressions (9) and (10) reduce to those obtained previous- 
ly for high-inertia particles [1]. Finally, we note that, as before, the 
correlation coefficients are described by a Gaussian curve. Thus, for 
the longitudinal correlation coefficient from (9) we have 

/ (r, t) = exp [ - -  
/.2(p A- N) ] (11) 

8vpt j"  

Hence it follows that the microscales of turbulence expressed in 
terms of the correlation coefficients are reduced by [(p + ~.)/p]l/2 
t imes as compared with the case of a homogeneous fluid. The process 
of decay of turbulence of the mixture in the final period will be self- 
similar, as in the case of a homogeneous fluid. 

We note that, if  the factor exp [ - 2c (p + ~) t] is neglected, Eqs. 
(9), (10) and (11) coincide with the corresponding expressions for the 
turbulence of a homogeneous fluid, if instead of the kinematic vis- 
cosity v we introduce some effective coefficient v* = vp/  (p + ~). 

We note further that (9) follows from the asymptotic representa- 
tion of (8), valid at vk ~ << cp. Therefore in (9) and the expressions 
following from it passage to the l imit as p ~ 0 is impossible. 

The authors thank G. I. Barenblatt for discussing their work. 
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